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We present a modelling framework for predicting forest areas. The framework is obtained

by integrating a machine learning software suite within the GRASS Geographical Informa-

tion System (GIS) and by providing additional methods for predictive habitat modelling.

Three machine learning techniques (Tree-Based Classification, Neural Networks and Ran-

dom Forest) are available in parallel for modelling from climatic and topographic variables.

Model evaluation and parameter selection are measured by sensitivity-specificity ROC anal-

ysis, while the final presence and absence maps are obtained through maximisation of the

kappa statistic. The modelling framework is applied at a resolution of 1 km with Iberian

subpopulations of Pinus sylvestris L. forests. For this data set, the most accurate algorithm

is Breiman’s random forest, an ensemble method which provides automatic combination

of tree-classifiers trained on bootstrapped subsamples and randomised variable sets. All

models show a potential area of P. sylvestris for the Iberian Peninsula which is larger than

the present one, a result corroborated by regional pollen analyses.

© 2006 Elsevier B.V. All rights reserved.
Iberian Peninsula

2003). They are also of evident scientific interest with regard
Pinus sylvestris L.

Habitat suitability

1. Introduction

The study of the potential distribution areas of species is
a discipline of great interest to many researchers, due to
the difficulty involved in establishing these areas in highly
modified environments like Europe. Modelling of species dis-
tributions has become necessary in many aspects of biol-

ogy, ecology and biogeography. Habitat suitability models
could constitute a good tool for decision-making within the
framework of applied biology. They have mainly been used
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E-mail address: marta.benito@uam.es (M.B. Garzón).

0304-3800/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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in strategies for conservation, planning and forest manage-
ment. In addition, habitat suitability models have recently
aroused greater interest on being used for predicting the
movement of species in the alternative impact scenarios that
might be caused by the climate change predicted by the
IPCC (Bakkenes et al., 2002; Pearson et al., 2002; Thuiller,
to gleaning more in-depth knowledge about the differences
existing between actual and potential species distribution
areas.
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As a result of the efforts made in modelling habitat suitabil-
ity, predictive techniques have become more numerous and
have been improved in recent years (Guisan and Zimmerman,
2000), with a direct effect upon the quality and credibility of
the models. Many different models are currently available.
Among these, classical statistical models such as linear regres-
sion (Augustin et al., 2001), generalized linear models (Guisan
et al., 1999), generalized additive models (Seoane et al., 2004;
Luoto et al., 2005) and GRASP (generalized regression analy-
sis and spatial prediction) (Lehmann et al., 2003), have been
widely used. Also other approaches based on the delimitation
of an hyperspace or envelope based on ecogeographical vari-
ables have been used for predicting habitat suitability. These
models are known as environmental envelope models. Some
of the most popular are BIOCLIM (Busby, 1991; Beamount et al.,
2005), HABITAT (Walker and Cocks, 1991), DOMAIN (Carpenter
et al., 1993) and ENFA (Hirtzel et al., 2002). Another kind of
models are based on Bayesian inference (Fleishman et al.,
2001; Ellison, 2004) for predicting species or communities dis-
tributions. Original approaches have also been used for spe-
cific problems such as the lack of absence data (Robertson et
al., 2003; Hirtzel et al., 2002; Ottaviani et al., 2004; Phillips et
al., 2006), or the use of phytosociological data as an input for
prediction (Duckworth et al., 2000). In recent years, greater use
has been made of machine learning methods, which comprise
a series of non-parametric techniques capable of synthesising
regression or classification functions based on available data.
Machine learning methods present some advantages with
respect to statistical methods: they are able to deal with com-
plex relationships between predictors that can arise within
large amounts of data, are able to process non-linear rela-
tionships between predictors and are able to process com-
plex and noise data (Recknagel, 2001). The first techniques
used for prediction of species distribution within machine
learning methodology were classification and regression trees
(Vayssièrs et al., 2000; Debeljak et al., 2001; Miller and Franklin,
2002; Džeroski and Drumm, 2003; Seoane et al., 2005), based
on variants of the recursive partitioning CART model (Breiman
et al., 1984). Later on, artificial neural networks were also uti-
lized for building habitat suitability models (Lek and Guegan,
1999; Pearson et al., 2002; Dedecker et al., 2004), obtaining
models that are complex superpositions of sigmoidal func-
tions (Bishop, 1995). Recently, genetic algorithms (Peterson et
al., 2002; Anderson et al., 2003; Dudik et al., 2004) have been
used, based upon genetic and evolutionary models (Holland,
1975).

In practice, the alternative predictive techniques do not
produce the same distribution areas, with differences also
depending on the species under study (Robertson et al., 2003;
Thuiller, 2003; Segurado and Araujo, 2004). The modelling task
therefore involves testing of several predictive techniques: if
the study involves many species and a high spatial resolution,
developing and comparing models may easily become com-
plex and computationally challenging.

Apart from the availability of a predictive technique
adjusted to one’s specific needs, other factors that might help

to improve the results obtained by the models should also be
taken into consideration, such as the spatial resolution of the
input data. This resolution depends very much on the geo-
graphic area being covered by the model. Studies for the whole
1 9 7 ( 2 0 0 6 ) 383–393

of Europe generally regard a 50 km resolution (Bakkenes et al.,
2002; Thuiller, 2003). Some regional studies have been devel-
oped at higher resolution, for example, for Portugal, at 10 km
(Segurado and Araujo, 2004); for the United Kingdom, studies
exist at resolutions of 5 and 1 km (Pearson et al., 2004). For the
Iberian Peninsula, there are regional vegetation models for the
North-East of Spain (Catalonia) with 1 km grids (Rouget et al.,
2001; Thuiller et al., 2003).

The Mediterranean basin is one of the areas with the high-
est level of plant diversity in Europe, partly due to the fact that
it comprises a transition area to North African flora. Within the
Mediterranean basin, some peninsulas are of particular inter-
est, presenting a certain geographic isolation. In this study, we
consider the Iberian Peninsula, one of the large-scale Euro-
pean hot-spots (Gómez-Campo and Malato-Béliz, 1985). The
importance of this geographic region lies in the fact that it
also served as a refuge to the migration of numerous Euro-
pean taxa during the glaciations (Hewitt, 1999). Furthermore,
at present no potential vegetation model exists for the Iberian
Peninsula, except for several intuitive approaches based upon
the phytosociological interpretation of the vegetation series
(Folch i Guillén, 1981; Rivas Martı́nez, 1987; Loidi and Bascones,
1995).

This study focuses upon the design of habitat suitabil-
ity models at detailed scale for the whole Iberian Peninsula,
with the aim of establishing the potential distribution areas
of forests by comparing the predictive maps of species dis-
tribution generated by alternative methods. In order to reach
this objective, we implemented a general modelling frame-
work and used the Pinus sylvestris L. forests of Iberia as an
example. Machine learning methods were used to support
flexible modelling strategies, capable of detecting and mak-
ing use, for prediction, of more complex relationships among
the variables without assuming fixed hypotheses, such as a
linear dependence on the predictor variables.

The Scots pine is a Northern European conifer that ranges
from Eastern Siberia to Scotland, and from the Arctic in Scan-
dinavia to its southernmost limit in Spain. In the Northern
zone, its area is relatively continuous, whereas in the South it
is fragmented and limited to mountain ranges (Farjon, 1984).
Iberian populations or subpopulations differ morphologically
and genetically from the remaining European populations
(Ruby, 1967; Prus-Glowacki and Stephan, 1994; Prus-Glowacki
et al., 2003), probably as a result of the Iberian Peninsula’s role
as a refuge during the Holocene.

With the Scots pine distribution in the Iberian Peninsula
as a specific example, we designed a modelling framework
for the prediction of the habitat of forest species, introducing
for the first time the random forest (RF) algorithm (Breiman,
2001) for predicting species distribution areas. Within this
modelling framework, we obtained presence/absence maps of
the species, comparing maps obtained by three different pre-
dictive techniques. The modelling was obtained connecting
two open source software systems: GRASS-GIS (Neteler and
Mitasova, 2004) and R (R Development Core Team, 2004), by
means of the GRASS/R interface (Bivand, 2000).
In order to improve the biological significance of the mod-
els, we propose, wherever possible, to validate the results
with available biological data. This biological validation can be
grounded by the use of historic data on the presence of species
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n the past. For the Scots pine on the Iberian Peninsula, these
ata were available in the bibliography.

. Methods

.1. Study area

he study area comprises the Iberian Peninsula (Spain and
ortugal) and the Balearic Islands. The resolution chosen for
he study was 1 km grid, for a total area of 585,700 km2.

.2. Environmental variables

he variables used as predictors were both climatic and topo-
raphic. The topographic variables slope and aspect were
dded due to the detailed resolution of the model and were
erived from the digital elevation model SRTM V1 DEM (Shut-
le Radar Topographic Mission, at 3′′ resolution) by applying
he GRASS r.slope.aspect module. The topographic variables
ere: slope and aspect. The climatic variables used were:

easonal average temperature, seasonal precipitation, annual
recipitation, annual average temperature, minimum aver-
ge temperature of the coldest month and maximum average
emperature of the warmest month. In short, a total of 14 envi-
onmental variables were considered for modelling. The cli-

atic variables were interpolated by means of trend surfaces
Mitasova and Mitas, 1993) at 3′′ resolution by the v.surf.rst
RASS module (Mitasova and Mitas, 1993) based on applied

o a dataset derived from the Agronomic Characterisation of
panish provinces (Sánchez Palomares et al., 1999), covering a
eriod from 1974 to 1990 with 2605 weather stations.

.3. Forest distribution

he presence of P. sylvestris L. was taken from the most recent
panish forest map (Ruiz de la Torre, 2001). The map, at the
riginal scale of 1:200,000, was rasterised to 1 km for this study,
overing a total of 8255 grid cells indicating the presence of
orests of this tree, and with a total number of cells of 585,700
or the whole Iberian Peninsula.

.4. The modelling framework

e created a modelling framework including all the process
teps to be followed in the design of predictive vegetation
aps (Fig. 1). This framework was specifically created to train,

elect and validate models based on the predictive machine
earning techniques from the available data. The final result is
resented as a potential species presence/absence map. This
odelling suite can be used on any data set of environmen-

al variables, for different geographic areas and resolutions.
ithin the machine learning paradigm, we chose three pre-

ictive models, ranging from the simplest and most intuitive
lassification and regression trees to more complex methods,
ncluding Breiman’s random forest algorithm, used for the

rst time for predicting species distribution. In this study, we
anted to develop the possible models permitted by the mod-

lling framework in order to quantitatively and qualitatively
ompare the different final maps.
7 ( 2 0 0 6 ) 383–393 385

Within a target region, the modelling framework builds and
selects the models on a randomly selected subset of the avail-
able cells. The models are then tested on a separated dataset
from the remaining geographical area. In this study, the total
data set available for modelling and testing comprised 16,510
cells to ensure the prevalence (defined as the frequency of
species occurrence) of the model-building data of 50%.

The main phases of this modelling procedure are: model
selection, training, prediction and final map selection (Fig. 1).
The implementation of all the processes was mainly obtained
with the use of two free software environments for data anal-
ysis and scientific computation. The geographic analysis was
performed within the GRASS GIS, and the modelling analysis
in the R system for statistical computing. They were con-
nected by the GRASS-R interface (Bivand, 2000, 2004; Bivand
and Neteler, 2000), also using scripts and programs of the
Linux operating system.

Within the framework, the modelling process follows the
order defined by different steps, as sketched in Fig. 1. The pro-
cess is developed by training on data samples constituted by
the environmental variables used as predictors and the pres-
ence of the species as label to be predicted. In order to evaluate
the models, the original database is randomly divided in two
datasets. The first one (1/3 of the original dataset) is the eval-
uation set, and it is used to evaluate the models in the model
selection phase. The second one (2/3 of the original dataset) is
the training set, and it is used to train the data in the model
development phase. We will now describe the steps defining
the different processes.

2.4.1. Model selection
The first step of our modelling strategy regards the selection
of the most appropriate model. In this study, the evaluation
set is used to develop alternative models and choose one in
terms of an indicator of predictive accuracy. Different predic-
tive models are available in our framework and tested in this
study: classification and regression trees, random forest and
neural networks. For each model, parameters may be tuned
for optimal accuracy on new data (predictive accuracy).

The following predictive models were used within this
modelling framework:

2.4.1.1. Classification and regression trees (CART). This
method was applied by using the rpart library (Therneau
and Atkinson, 1997), which provides the CART methodology
(Breiman et al., 1984) also within the R statistical computing
environment. CART models are developed by recursively
partitioning the data set: the model is defined by a tree struc-
ture, whose nodes are associated to splits of the data along
one variable (Venables and Ripley, 2002). There are two basic
steps in the construction of the model: the first one involves
growing a maximal tree model with the training dataset.
The maximal tree is usually overfitted, i.e. the algorithm
extracts complete descriptive information from the data,
including noise information. The second step is focused on
constraining this overfitting by pruning the tree at its best

generalisation size. There are several pruning methods; in
this study, a cost-complexity criterion was used (Therneau
and Atkinson, 1997). This criterion is defined by one tuning
parameter, cp, which sets the optimum tree as a trade-off
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r the
Fig. 1 – A flowchart of the main processes fo

between goodness of fit on training data and size of the
tree.
2.4.1.2. Random forest (RF). The randomforest library (Liaw and
Wiener, 2002) was used within the R environment. The RF algo-
rithm (Breiman, 2001) implements the automatic combination
of tree predictors. As in bagging (Breiman, 1996), the model is
predictive mapping of species distribution.

obtained by combining base models trained on different boot-
strap replicate samples of the data. In addition, only a random
subset of the available variables is used for the candidate split-

ting variables at each node: this feature alleviates the problem
of correlated variables because they may be extracted in turn,
thus contributing to the aggregated tree model. On a battery
of 20 machine learning datasets, RF gave better predictive
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Table 1 – Definition of the confusion matrix

Predicted Real

+ −
+ TP FP
− FN TN
e c o l o g i c a l m o d e l l i n

ccuracy of single tree models (Breiman, 2001). The graphical
isualization provided by CART, which has been questioned
or unstability and for poorly dealing with correlated variables,
s recovered by several diagnostic functions in the RF frame-
ork. In particular, the RF algorithm also provides a measure
f variable importance in the modelling, both for classifica-
ion as well as for regression. Importance is derived from the
ontribution of each variable accumulated along all nodes and
ll trees where it is used (Breiman, 2002). The algorithm also
ncludes the computation of the OOB (“out of bag”) error esti-

ate, which is computed for each tree over the data remaining
ut of the corresponding bootstrap sample, and then averaged

Breiman, 2002). In regression, the average predicted error of
F is proven to be always lower than the predicted error of a
ingle tree by a factor which is the correlation between resid-
al errors of single trees (Breiman, 2001; Liaw and Wiener,
002). The RF has been used in numerous applicative contexts:
ere we expand the integration of RF and GIS demonstrated in

Furlanello et al., 2003). In this study, we also used a test set in
rder to compare and optimise the random forest model with
eural networks and regression trees. Random forest may con-
rol variance and overfitting, and it mainly requires only one
uning hyper-parameter: the number of variables randomly
sed at each split (mtry). For regression, the recommended
alue for mtry is the number of predictors divided by three
Liaw and Wiener, 2002), but it is often convenient to optimise
he model by selecting an optimal value for mtry.

.4.1.3. Neural networks (NN). The nnet library (Venables
nd Ripley, 2002) is available in the R system and it provides
neural networks predictor. In this study, a feed-forward
ultilayer perceptron (MLP) was used. This NN has three

ypes of layers of units: input, hidden and output layers. In
ur study, one single hidden layer architecture was used,
he number of neurons in the hidden serving as a tuning
yper-parameter of the whole model. The activation function
f the hidden layer units is a logistic function, and the output
linear function, an architecture generally providing good

pproximation capabilities (Venables and Ripley, 1999). The
oefficients of the MLP are trained by minimization of an error
unction (E = 1/2�(yk − tk)2); in this study the backpropagation
lgorithm was used to minimize the loss (Bishop, 1995). To
void overfitting in NN, a cross-validation methodology was
mplemented, stopping the training network before overfit
ccurs (Bishop, 1995).

.4.1.4. Model selection. After building these three models
ith the evaluation set, the selection of the best optimal one
as performed. It is important to use different predictive mod-

ls when working with environmental data in the prediction
f habitat suitability, as it is known that strongly different
esponses may be obtained for different species with differ-
nt predictive models (Thuiller, 2003). The selection of the
est model is obtained by considering the Receiver Operating
haracteristics Curve (ROC) in terms of the underlying area

AUC), a threshold independent index widely used in ecology.

OC and AUC are based on the concept of class-dependent
ccuracy, which may tabulated through a confusion matrix
further reading: Fielding and Bell, 1997; Manel et al., 2001;
nderson et al., 2003; McPherson et al., 2004) indicating the
TP: True positive, FN: False negative, FP: False positive, TN: True
positive.

true positive (TP), false positive (FP), false negative (FN), and
true negative (TN) predictions (Table 1). Given a model M(h) and
a hyper-parameter h, the points on the ROC curve are defined,
at different values of h, by the sensitivity, or true positive rate
(TP/(TP + FN)), obtained as a function of the 1-specificity indi-
cator, or false positive rate (FP/(FP + TN)). The AUC is a measure
of the area under the ROC, ranging from 0.5 (random accuracy)
to a maximum value of 1, which represents the most accurate
model theoretically achievable.

2.4.2. Model development
Once we have established the most suitable predictive method
for the species, a model is developed on the training dataset
(Fig. 1), including parameter tuning. Thereafter, the modelling
framework will therefore only work with the most accurate
model for the species. In this study, however, all the processes
have been continued for the three predictive models, in order
to compare the resulting maps.

2.4.3. Predictive maps
The next step is the application of the model over the whole
region (prediction: step 3, Fig. 1). The result of this process is
a probability map of the presence of the study species. In this
paper, the predictive maps were developed for the present:
after calibration of the model, the procedure may be applied
using environmental data from simulations of the future or
the past.

To facilitate the interpretation of the results, a pres-
ence/absence map is derived from the probability map. Sev-
eral statistical methods derived from a confusion table have
been used to get presence/absence map from probability map
(Fielding and Bell, 1997; Manel et al., 2001; Liu et al., 2005): sen-
sitivity, specificity, odds ratio, kappa, overall prediction suc-
cess, normalised mutual information statistics, etc. We have
generated a binary presence/absence map from the probabil-
ity map according to a threshold by maximising the kappa
statistic (Monserud and Leemans, 1992). The kappa statistic
defines a similarity measure between the binary map and
the available real or simulated biological evidence. The kappa
values range from 0 to 1. In this application domain, values
below 0.4 represent a low degree of similarity, between 0.4 and
0.55 an acceptable degree of similarity, between 0.55 and 0.70
good, from 0.70 to 0.85 very good, and above 0.85 excellent
(Monserud and Leemans, 1992).

3. Results
In this paper we develop all the possible models permit-
ted by the modelling framework in order to quantitatively
and qualitatively compare the different final maps (Fig. 2,
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Fig. 2 – The real (a) and predicted distributions are compared in
forest and (d) neural networks.

Table 2 – Comparison of the accuracy prediction
measures used to assess model performance

MODEL CART RF NN

AUC 0.92 0.98 0.94
Kappa 0.57 0.62 0.60

AUC is used for estimating the prediction accuracy of habitat suit-

models. A different number of trees was also tested without
significant differences. The number of variables used at
each split (mtry) ranged between 1 and 14, obtaining the
highest value of AUC = 0.98 for six variables. It is worth noting
ability and also the selection of the final model. The kappa statistic
is used as an estimator of agreement of presence/absence predic-
tion.

Tables 2 and 3); furthermore, we consider ROC plots in the
analysis (Fig. 3). The results of the processes obtained for each
of the predictive methods are the following:

CART: the tree was fully grown and then pruned according
to the cost-complexity rule. Different tuning parameters (cp
values) were tested, from 0 to 1, and the highest AUC was pro-
vided by cp = 0.1, with an AUC value of 0.92 (Table 2). The kappa

statistic value used to cut off the final map was 0.57, with a
threshold of 0.7, which generated the final presence/absence
map (Fig. 2). Regression trees provide useful information on
the variables used at each split. The variables used in the final

Table 3 – A comparison of potential distribution areas,
for the models (CART, RF and NN), with the actual
distribution area of Pinus sylvestris L. in the Iberian
Peninsula (Ruiz de la Torre, 2001)

MODEL CART RF NN Real

Area (km2) 57900 32300 103800 8254
the figure, (b) regression and classification trees, (c) random

tree model were: summer precipitation, total precipitation and
minimum of average temperature of the coldest month.

RF: the final model was obtained by aggregating 500 base
Fig. 3 – The ROC (receiver-operating) plot for random forest
(solid line), neural networks (dotted line) and regression
and classification trees (dashed line). For each model, the
curves trace the true positive rate (or sensitivity) vs. the
false positive rate (or 1-specificity) as a function of the
threshold.



e c o l o g i c a l m o d e l l i n g 1 9 7 ( 2 0 0 6 ) 383–393 389

Fig. 4 – Variable importance plot generated by random forest algorithm. This plot shows the variable importance measured
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s increased node impurity (IncNodeImp) and also the mean
able 4.

hat the AUC hardly changes for increasing mtry values. A
appa = 0.62 was obtained with a threshold of 0.8 for the
nal presence/absence map (Fig. 2). The variables used by RF,
orted according to an decreasing degree of importance in the
odelling were: summer precipitation, autumn average tem-

erature, winter average temperature, minimum average tem-
erature of the coldest month, winter precipitation, annual

verage temperature, springtime average temperature, total
recipitation, summer average temperature, maximum aver-
ge temperature of the warmest month, springtime precipi-
ation, autumn precipitation, slope and aspect (Table 4; Fig. 4).

Table 4 – Random forest variable importance order in the
prediction

1 Psum Summer precipitation
2 Tmaut Autumn average temperature
3 Tmwin Winter average temperature
4 Tmmin Minimum average temperature of the

coldest month
5 Pwin Winter precipitation
6 Tmed Annual average temperature
7 Tmsp Springtime average temperature
8 Ptot Total precipitation
9 Tmsum Summer average temperature

10 Tmmax Maximum average temperature of the
warmest month

11 Pspr Springtime precipitation
12 Paut Autumn precipitation
13 Slope Slope
14 Aspect Aspect
are error (IncMSE). The variable full names are shown in

NN: a number of neurons in the hidden layer from 10 to 60
was used to calibrate the model, with a final architecture of 40
neurons, which provides the highest AUC = 0.94 of the model
(Table 2). The kappa = 0.60 for a threshold of 0.7, was obtained
in correspondence to the final presence/absence map (Fig. 2).

The accuracy of models was assessed by ROC analysis
(Fig. 3); high performance, with values always over 0.9, was
obtained by the three models. The random forest algorithm,
however, was clearly the most accurate, followed by neural
networks, and then by the regression and classification tree
models.

Based on the final presence/absence maps generated, we
quantified the distribution area (in km2) for the three models,
and for the real distribution of the species. Significant differ-
ences were found in the predicted suitability area (Table 3) for
the three models.

4. Discussion

The statistical learning modelling framework introduced in
this study does not require assumption of normality of the
variables and can deal with non-linear relationships. The pro-
cedures are independent from the scale resolution, geograph-
ical area and tree distribution. These features may have a
substantial utility in ecology, for further applications in con-

servation and forest management. In particular, the approach
may be used to model distribution shifts resulting from cli-
mate change. Moreover it constitutes a new approach with
respect to the variety of models described in literature (i.e.
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Hirtzel et al., 2002; Pearson et al., 2002; Thuiller, 2003), partic-
ularly for the incorporation of the random forest algorithm for
species prediction. The results obtained with the random for-
est method for predicting habitat suitability are very encour-
aging, presenting the highest accuracy among the machine
learning methods considered in this study.

CART have been previously used for species distribution
(Moore et al., 1991; Iverson and Prasad, 1999; Iverson et al.,
1999; Vayssièrs et al., 2000). One of the remarkable charac-
teristics of CART is the simplicity involved in the modelling
(De’Ath and Fabricius, 2000), which enables the variable impor-
tance for each node to be established. It was, however, the least
accurate predictive model in this study (AUC = 0.92).

Neural networks have also been increasingly used for
species distribution modelling (Benito Garzón et al., 2003;
Thuiller, 2003; Linderman et al., 2004). The greatest shortcom-
ing of NN is that it is hard to interpret their resulting struc-
ture, and their calibration may result mostly a “black art” to
non-specialists (Caudill, 1991). NN do not easily show which
variables and parameters are most important in the model
construction. Furthermore, many tuneable parameters must
be taken, implicitly or explicitly, into account: number of hid-
den layers, number of neurons in the hidden layers, weight
decay, learning parameter, initial connections among the node
weights, etc. When working with NNs, therefore, high pre-
dictive accuracy is attained with the use of only a careful
experimental scheme which may prevent overfitting effects.
In this study, the NN best model reached AUC = 0.94, a value
slightly greater than that obtained with the use of the much
simpler classification and regression trees.

The Random forest model has not previously been used for
predicting species habitat suitability previously. In this study,
RF is the most accurate algorithm (AUC = 0.98). The RF vari-
able importance measure indicated summer precipitation as
the most influence variable in the modelling (Table 4). This is
expected because of the Mediterranean climate of the Iberian
Peninsula, and because of the P. sylvestris requirements as a
north European conifer that find in the Iberian Peninsula its
southernmost limit. RF has enabled to establish a measure of
variable importance of each variable in the model construc-
tion and also the mean square error associated (Fig. 4). When
compared with the actual distribution, the kappa statistic is
used to assess the final map varied among the different mod-
els, ranging from 0.57 (CART) to 0.62 for the random forest
algorithm (Table 2). Thus, these results also indicate random
forest as the most accurate of the three methods used. As sum-
marised in Table 3, the RF model is also the closest in presence
area to the actual distribution.

Apart from the good results obtained in the evaluation of
the models using AUC, another important aspect of the mod-
elling involves the evaluation and biological interpretation of
the results obtained. In the case of P. sylvestris in the Iberian
Peninsula, the results are encouraging because they coin-
cide with the bibliographic data collected. Data exists on the
very recent historic presence of P. sylvestris in the Cantabrian
Mountains, a mountain range in the North of the Peninsula,
where the real distribution of this species is currently very
limited. In this area, pollen studies indicate that the Scots
pines practically disappeared as a result of anthropic action
(Costa Tenorio et al., 1990; Garcı́a Antón et al., 1997; Franco

Múgica et al., 2001). Presence of P. sylvestris is indicated in
the North of the Peninsula on all the three final maps (Fig. 3).
Furthermore, the maps created with the three models (Fig. 3)
present an extended potential area in the Central System
mountain range, a result supported by palinological studies
(Franco Múgica et al., 1998). Moreover, the results of our mod-
els can be compared with those obtained for the same species
by other authors. Both the results obtained by Thuiller et al.
(2003), and those obtained by Rouget et al. (2001) in their mod-
els for P. sylvestris in the NE of Spain generally coincide with the
results of our study, thus presenting a very similar potential
distribution area for Catalonia. In short, a larger potential dis-
tribution area for the Scots pine is evident in relation to what
can be observed at present, and this is confirmed by the results
of palinological studies. This area may have been reduced in
recent years by competition from other species and by intense
anthropic activity which, by means of fire management, has
favoured the spread of pastures in the mountains of northern
Spain (Garcı́a Antón et al., 1997; Sánchez Goméz and Hannon,
1999).

In biological terms, considering the three final maps, the
one generated with the use of neural networks is inaccurate in
the distribution area; in addition, the neural networks model
forecasts a much larger potential area than the other models,
up to 103,800 km2 (Table 3). The map designed with classifi-
cation and regression trees presents an excessively dispersed
area, if we consider that the study was based on distributions
from forests and not on isolated sampling sites. The predicted
occupation area is 57,900 km2 (Table 3). The most statisti-
cally accurate map, the one designed with random forest, is
indeed the one that better supports the biological knowledge
of presence. Although the occupation area predicted by RF
(32,300 km2) is more extended in relation to the actual one,
it is still the smallest between the three models.

This class of species suitability models could help to clar-
ify certain doubts regarding primitive forests. We expect that
modelling will need to consider additional information, in
particular data on genetics, on ecophysiology data, and on
interspecies competition. Depending on the scale of analysis,
different tendencies can be described. It is therefore impor-
tant to integrate studies at different scales and resolutions,
and in different geographic areas. At the scale used in this
study (1 km2) for a large geographic area (Iberian Peninsula
and Balearic Islands), the maps we have generated may detect
significant tendencies as well as small refuges and migratory
routes, of specific interest due to the relative geographic isola-
tion of this peninsula. The isolation has been corroborated by
means of genetic analyses (Prus-Glowacki and Stephan, 1994;
Prus-Glowacki et al., 2003). The availability of refuges has been
vital on the Iberian Peninsula for the conservation of flora dur-
ing the colder periods.

Species distributions are not only affected by climatic and
topographic variables. The dispersal and colonization, migra-
tion rates of species, habitat fragmentation and historic fac-
tors, among others, have probably determined their current
distribution. Modelling has been intensively used to calcu-
late dispersal and migration rates of species (Labra et al.,
2003; Takahashi and Kamitani, 2004; Pearson and Dawson,
2004; Soons and Ozinga, 2005). These calculations have been
stepped up especially in the last years because of the global
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arming that could lead shifts in species distributions. Nowa-
ays, some models are trying to combine habitat suitability
nd kernel based approaches to estimate species dispersal
ates in order to evaluate the migration of the species under
limate change (Iverson et al., 2004). But no model was capable
f integrating all the aforementioned factors that are affecting
pecies distributions. The results of our models should there-
ore be interpreted with full knowledge of these inevitable
imitations. Assuming these limitations, the modelling frame-
ork introduced in this study may offer new possibilities

or mapping and analysing the potential vegetation at the
ifferent scale required by different geographic areas. The
redictive approach is vital to decision-making in planning,
esources management and conservation. It might also be rel-
vant in the study of the potential movements and migration
atterns in the projected scenarios of future climate change.

To conclude, the modelling framework presented here pro-
ided good results, with notably high and stable AUC values
btained by changing the tuning parameter achieved by the
andom forest learning method. To our knowledge this work
epresents the first time that RF is used for habitat predic-
ion. Furthermore, with regard to the P. sylvestris map chosen
o demonstrate the modelling strategy, we have shown that
ts occupation area has been restricted in the Iberian Penin-
ula (particularly in the mountains in the North and centre of
he peninsula) in relation to its climatic capacity. The results
btained in this modelling framework are confirmed by pollen
ata, which indicate the presence of P. sylvestris in the recent
ast in the North of the Iberian Peninsula and a previous more
xtended distribution in the centre of Iberia.
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bosques esclerófilos españoles mediante redes neuronales
artificiales. Graellsia 59 (2–3), 345–358.

Bishop, C., 1995. Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, 482 pp.

Bivand, R.S., 2000. Using the R statistical data analysis
language on GRASS 5.0 GIS database files. Comput. Geosci.
26, 1043–1052.

Bivand, R.S., 2004. GRASS: Interface between GRASS 5.0
Geographical Information System and R. 29 pp.
http://cran.r-project.org/src/contrib/Descriptions/GRASS.html.

Bivand, R.S., Neteler, M., 2000. Open source geocomputation:
using the R data analysis language integrated with GRASS
GIS and PostgreSQL data base systems. In: Proceedings of
the fifth Conference on Geocomputation, University of
Greenwich, UK, 23–25 August.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24, 123–140.
Breiman, L., 2001. Random forest. Mach. Learn. 45, 5–32.
Breiman, L., 2002. Manual on Setting Up, using, and

understanding Random Forests v3.1. 2002.
http://www.stat.berkeley.edu/users/breiman/RandomForests/
cc home.htm.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984.
Classification and Regression Trees. Wadsworth, Belmont,
368 pp.

Busby, J.R., 1991. BIOCLIM: a bioclimate analysis and prediction
system. In: Margules, C.R., Austin, M.P. (Eds.), Nature
Conservation: Cost Effective Biological Surveys and Data
Analysis. CSIRO, Melbourne, pp. 64–68.

Caudill, M., 1991. Neural networks training trips and
techniques. AI Expert 6 (1), 56–61.

Carpenter, G., Gillison, A.N., Winter, J., 1993. DOMAIN: a flexible
modeling procedure for mapping potential distributions of
plants and animals. Biodivers. Conserv. 2, 667–680.

Costa Tenorio, M., Garcia Anton, M., Morla Juaristi, C., Sainz
Ollero, H., 1990. La evolución de los bosques de la Penı́nsula
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